A Technical and Operational Perspective on Quality Analysis of Stitching Images with Multi-Row Panorama and Multimedia Sources for Visualizing the Tourism Site of Onshore Wind Farm

Author:

Lai Jhe-SyuanORCID,Tsai Yi-Hung,Chang Min-Jhen,Huang Jun-Yi,Chi Chao-Ming

Abstract

A virtual tour of the onshore wind farm near Gaomei Wetland, Taichung City, Taiwan, was produced by producing panoramic images of the site by stitching images captured with a full-frame digital single-lens reflex camera and a multi-row panorama instrument, which automatically and precisely divided each scene into several images. Subsequently, the image stitching quality was improved by calculating the root mean square error (RMSE) of tie point matching and adjusting the tie points. Errors due to eccentricity attributed to the camera’s relative position to the rotational axis of the multi-row panorama instrument were examined and solved; the effect of the overlap rate on image stitching quality was also investigated. According to the study results, the overlap rate between the original images was inversely proportional to the RMSE and directly proportional to the time required for photography and image processing. The stitching quality was improved by resolving eccentricity and by increasing the number of tie points. The RMSEs of the panoramas of all stations were all less than 5 pixels. Subsequently, multimedia materials providing information on wind turbine attributes were combined with the panorama platform to establish a virtual reality tour platform. The content of the platform could be accessed with a smartphone and viewed with a virtual reality device and could promote both tourist attractions and wind energy.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3