Case Study of the Aerosol Optical Properties in the Atmosphere over Wuhan, China

Author:

Mao Qianjun1,Hu Gangzheng1,Nie Xin1

Affiliation:

1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China

Abstract

The research on regional aerosol optical properties is of great significance for exploring climate regulation mechanisms and controlling atmospheric pollution. Based on the solar radiation observation platform, a three-month optical observation of atmospheric aerosols was conducted in Wuhan, China. The daily and monthly variation characteristics of aerosol optical depth (AOD550), Angstrom parameter (α440–870), and turbidity coefficient (β) were revealed, and the interrelations between the three optical parameters were fitted. Then, the potential relationships between atmospheric particulate matter (PM2.5, PM10) with AOD550 and β were discussed. The results show that the average values of AOD550, α440–870, and β in this case study are 0.42, 1.32, and 0.20, respectively. The frequency distribution patterns of the three optical parameters are all unimodal. AOD550 has a good linear correlation system with β, and the Pearson correlation coefficient reaches 0.94, while its correlation with α440–870 is not significant. The daily variation in AOD550 and β both show an increasing trend, and their monthly increases are more than 50%. However, the daily variation in α440–870 is relatively stable, and the fitted line is a nearly horizontal line with no significant monthly variation. The fluctuation of particulate matter concentration affects the aerosol optical properties to some extent, among which β has a prominent effect on the response to the change in PM2.5 concentration with a linear correlation coefficient of 0.861. As the concentration of particulate matter increases, the proportion of fine particulate matter in the atmosphere increases monthly, and the ratio of PM10 to PM2.5 concentrations decreases from 1.8:1 to 1.2:1. Atmospheric pollution conditions are frequent during this observation period, mainly at mildly turbid levels. Atmospheric turbidity shows an increasing trend month by month, and the concentration of particulate matter increases rapidly. The response of atmospheric aerosol optical properties to the changes in fine particulate matter concentration is significant, and controlling the particulate matter content in the atmosphere is an effective means to mitigate aerosol pollution.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3