Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region)

Author:

Prete Giuseppe1,Avolio Elenio2ORCID,Capparelli Vincenzo1,Lepreti Fabio13ORCID,Carbone Vincenzo13ORCID

Affiliation:

1. Department of Physics, University of Calabria, Ponte P. Bucci 31C, 87036 Rende, CS, Italy

2. National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), 88046 Lamezia Terme, CZ, Italy

3. National Institute for Astrophysics, Scientific Directorate, Viale del Parco Mellini 84, 00136 Roma, RM, Italy

Abstract

We apply extreme value theory (EVT) to study the daily precipitation and temperature extremes in the Calabria region (southern Italy) mainly considering a long-term observational dataset (1990–2020) and also investigating the possible use of the ERA5 (ECMWF Reanalysis v5) fields. The efficiency of the EVT applied on the available observational dataset is first assessed—both through a punctual statistical analysis and return-level maps. Two different EVT methods are adopted, namely the peak-over-threshold (POT) approach for the precipitation and the block-maxima (BM) approach for the temperature. The proposed methodologies appear to be suitable for describing daily extremes both in quantitative terms, considering the punctual analysis in specific points, and in terms of the most affected areas by extreme values, considering the return-level maps. Conversely, the analysis conducted using the reanalysis fields for the same time period highlights the limitations of using these fields for a correct quantitative reconstruction of the extremes while showing a certain consistency regarding the areas most affected by extreme events. By applying the methodology on the observed dataset but focusing on return periods of 50 and 100 years, an increasing trend of daily extreme rainfall and temperature over the whole region emerges, with specific areas more affected by these events; in particular, rainfall values up to 500 mm/day are predicted in the southeastern part of Calabria for the 50-year-return period, and maximum daily temperatures up to 40 °C are expected in the next 100 years, mainly in the western and southern parts of the region. These results offer a useful perspective for evaluating the exacerbation of future extreme weather events possibly linked to climate change effects.

Funder

PRIN MIUR

PON MIUR OT4CLIMA

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3