Affiliation:
1. School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455000, China
2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract
The application of 2,5-dimethylfuran (DMF) as an alternative fuel for internal combustion engines has been gaining popularity. However, it has rarely been studied in previous research on the chemical kinetics of DMF for engine combustion simulations. In the present study, a reduced n-heptane/toluene/DMF-polycyclic aromatic hydrocarbon (PAH) reaction mechanism containing only 78 species amongst 190 reactions was proposed and applied to predict the combustion and emissions of a diesel engine using diesel/DMF blend fuel. First, a detailed reaction mechanism for DMF from the literature was chosen and reduced using combined mechanism reduction methods under engine-relevant conditions. Second, the reduced mechanism of DMF was incorporated into an existing reduced n-heptane/toluene-PAH mechanism to establish a three-component chemistry mechanism. Third, the predictive capability of the combined mechanism was improved by adjusting the rate constants of selected gas-phase reactions. Subsequently, the proposed three-component mechanism was compared and validated with experimental measurements of shock tube ignition delay times and premixed flame species profiles acquired from published papers. Moreover, new experimental data from a conventional diesel engine were used to evaluate the developed mechanism. Overall, the predicted results obtained by this proposed reduced n-heptane/toluene/DMF-PAH mechanism are in reasonable agreement with the available experiments.
Funder
Henan Province Key R & D and promotion projects
Science and Technology Development Project of Anyang city
Doctoral Start-up Funding of Anyang Institute of Technology
Key Scientific Research Projects of Colleges and Universities in Henan Province
Subject
Atmospheric Science,Environmental Science (miscellaneous)