Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes

Author:

Vaideanu Petru12,Ionita Monica134ORCID,Voiculescu Mirela5ORCID,Rimbu Norel1

Affiliation:

1. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany

2. Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania

3. Emil Racovita Institute of Speleology, Romanian Academy, 400006 Cluj-Napoca, Romania

4. Faculty of Forestry, Ștefan cel Mare University, 720229 Suceava, Romania

5. Department of Chemistry, Physics and Environment, University “Dunărea de Jos”, 800008 Galaţi, Romania

Abstract

Clouds are notoriously difficult to simulate. Here, we separate and quantify the impact of Pacific climate modes on total cloud cover (TCC) variability, using reliable satellite observations together with state-of-the art reanalysis outputs, over the 1979–2020 period. The two most prominent modes of annual TCC variability show intense loadings over the Pacific basin and explain most of the variance in what could be considered the “signal” in satellite TCC data. Canonical correlation analysis (CCA) provides coupled TCC—sea surface temperature (SST) patterns that are linked to the Eastern Pacific (EP) ElNiño—Southern Oscillation (ENSO) and the Central Pacific (CP) ENSO in a physically consistent manner. The two ENSO modes dominate global coupled SST–TCC variability with the footprint of the CP ENSO explaining roughly half of the variance induced by the EP ENSO among these coupled fields. Both the EP and the CP ENSO exert an influence on Pacific decadal TCC variability. The impact of both ENSO modes on global total cloud cover variability is amplified by two positive feedbacks. These results could be used as a reference for model investigations on future projections of coupled TCC—SST variability responses to the CP and the EP ENSO.

Funder

the Helmholtz Association

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3