Analysis of PM2.5 Characteristics in Yancheng from 2017 to 2021 Based on Kolmogorov–Zurbenko Filter and PSCF Model

Author:

Dai Mingming1ORCID,Liu Ankang2,Sheng Ye2,Xian Yue3,Wang Honglei4,Wang Chanjuan5

Affiliation:

1. Gaoyou Meteorological Bureau, Yangzhou 225600, China

2. Yancheng Meteorological Bureau, Yancheng 224051, China

3. Yancheng Eco-Environment Monitoring Center of Jiangsu Province, Yancheng 224051, China

4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing 210044, China

5. Yangzhou Meteorological Bureau, Yangzhou 225009, China

Abstract

Based on the hourly monitoring data including meteorological elements and PM2.5 mass concentration in Yancheng from 2017 to 2021, PM2.5 mass concentration variations, influencing factors and source apportionment were studied by the Kolmogorov–Zurbenko filter and Potential Source Contribution Function Analysis (PSCF) method. The results showed that the mass concentration of PM2.5 in Yancheng showed a decreasing trend from 2017 to 2021, with a decline rate of about 33.8% (2017, 44.79 ± 31.22 μg/m3; 2021, 29.66 ± 21.69 μg/m3); the visibility increased by 18.4% (2017, 11.69 ± 6.46 km; 2021,13.8 ± 6.24 km), which is mainly related to emission reduction measures in China. The mass concentration of PM2.5 has significant seasonal variation characteristics, with the highest in winter, reaching 60.61 μg/m3, and the lowest in summer, only 23.11 μg/m3. The diurnal variation of PM2.5 showed a unimodal distribution, and concentration difference is obvious under the influence of land–sea breeze (36.60 μg/m3, easterly wind; 43.57 μg/m3, westerly wind). Meteorological factors have an important impact on the mass concentration of PM2.5, which fluctuates with seasons. It is calculated to have a good fitting relationship between the visibility and PM2.5 concentration, and the correlation decreases with the increase in humidity (−0.71 ~ −0.41). The relatively clean atmosphere under high humidity conditions is also prone to the obstruction to vision. The corresponding PM2.5 concentration varies significantly under different wind directions and wind speeds in Yancheng, and high values mainly come from the northwest–southeast–southwest direction. The potential source regions in autumn are mainly distributed in southwestern Jiangsu and northwestern Zhejiang; the potential source regions in winter are mainly located in southwestern Jiangsu, southern Anhui and northern Jiangxi.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference36 articles.

1. Multi-attribute decision-based multi-objective optimization for regional atmospheric compound pollution control;Liu;Clim. Environ. Res.,2019

2. Framingham risk score modifies the effect of PM10 on heart rate variability;Feng;Sci. Total Environ.,2015

3. Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China;Deng;Atmos. Environ.,2008

4. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013;Ma;Environ. Health Perspect.,2016

5. Comparative ligandomic analysis of human lung epithelial cells exposed to PM2.5;Hong;Biomed. Environ. Sci.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3