Affiliation:
1. Department of Civil Engineering, Inha University, Incheon 22212, Republic of Korea
2. Institute of Water Resources System, Inha University, Incheon 22212, Republic of Korea
Abstract
There are several attempts to model rainfall time series which have been explored by members of the hydrological research communities. Rainfall, being one of the defining factors for a flooding event, is rarely modeled singularly in deep learning, as it is usually performed in multivariate analysis. This study will attempt to explore a time series modeling method in four subcatchments located in Samar, Philippines. In this study, the rainfall time series was treated as a signal and was reconstructed into a combination of a ‘smoothened’ or ‘denoised’ signal, and a ‘detailed’ or noise signal. The discrete wavelet transform (DWT) method was used as a reconstruction technique, in combination with the univariate long short-term memory (LSTM) network method. The combination of the two methods showed consistently high values of performance indicators, such as Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC), Kling–Gupta efficiency (KGE), index of agreement (IA), and Legates–McCabe index (LMI), with mean average percentage error (MAPE) values at almost zero, and consistently low values for both residual mean square error (RMSE) and RMSE-observations standard deviation ratio (RSR). The authors believe that the proposed method can give efficient, time-bound results to flood-prone countries such as the Philippines, where hydrological data are deficient.
Funder
National Research Foundation of Korea
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献