Atmospheric Particle Number Concentrations and New Particle Formation over the Southern Ocean and Antarctica: A Critical Review

Author:

Wang Jiayu1,Xu Guojie1ORCID,Chen Liqi2,Chen Kui3ORCID

Affiliation:

1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen 361021, China

3. Emergency Management School, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

The Southern Ocean (SO) and Antarctica play important roles in the global climate. The new particle formation (NPF) alters the availability of cloud condensation nuclei (CCN), leading to impacts on the cloud reflectance and global radiative budget. In this review, we introduce the common instruments for measuring particle number concentration (PNC) and particle number size distribution (PNSD). Based on the observations over the Antarctic and some Antarctic research stations, we explored spatial and temporal characteristics of PNCs and PNSDs. From the SO to the interior of the Antarctic, the total PNCs show a decreasing trend, and the total PNCs present an obvious seasonal cycle, with the low concentration in winter (June–August) and the high concentration in summer (December–February). By summarizing the research progress over the SO and Antarctica, we discuss possible precursors of the NPF: sulfuric acid (H2SO4, SA), methanesulfonic acid (CH3S(O)2OH, MSA), dimethyl sulfide ((CH3)2S, DMS), iodic acid (HIO3, IA), iodous acid (HIO2), ammonia (NH3), dimethylamine ((CH3)2NH, DMA), highly oxygenated organic molecules (HOMs) and other organics with low vapor pressure. We also explore several possible nucleation mechanisms: ion-induced nucleation of H2SO4 and NH3, H2SO4-amines, H2SO4-DMA-H2O, H2SO4-MSA-DMA, IA-MSA, IA-DMA, heterogeneous IA-organics nucleation mechanisms and environmental conditions required for the NPF. NPF is one of the main sources of CCN in the remote marine boundary layer, such as the SO and Antarctica. Thus, we discuss the contribution of NPF to CCN and the indirect impacts of NPF on climate. Through this review, we could better understand the PNC and NPF over the SO and Antarctica and their impacts on the global climate.

Funder

National Natural Science Foundation of China

Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Ministry of Natural Resources

Chinese Projects for Investigations and Assessments of the Arctic and Antarctic

Chinese International Cooperation Projects

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3