A Study on the Influence of Different Flue Gas Components on Supersaturated Environment Characteristics in a Multisection Growth Tube

Author:

Yu Yan1,Gu Shijie1,Xu Chengwei2,Fu Chao1,Hou Meiling1ORCID,Nie Tingting1,Hu Yincui1

Affiliation:

1. Hebei Provincial Innovation Center for Wireless Sensor Network Data Application Technology, Hebei Provincial Key Laboratory of Information Fusion and Intelligent Control, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, China

2. School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China

Abstract

In order to study the influence of typical coal-fired flue gas components on the supersaturation characteristics in a multisection growth tube, a two-dimensional heat and mass transfer model was used to predict the supersaturation profiles formed by the cool saturated flow into a warm-walled growth tube (Method 1) and the warm saturated flow into a cold-walled growth tube (Method 2). The calculated results show that the increase in the concentration of the three typical components CO2, SO2, and RH (relative humidity) of the flue gas is beneficial for the achievement of the supersaturated environment in Method 1. Additionally, having too many sections of the growth tube has a disadvantage in achieving the supersaturation profiles. When the content of the gas of lower Le is higher, having more sections of the growth tube is beneficial to achieving a supersaturated environment, while a lower number of sections is necessary when the gas content is lower in Method 2. In a word, the appropriate number of sections in a growth tube is significantly important for the achievement of a favorable supersaturated environment.

Funder

Science and Technology Project of Hebei Education Department

Science Foundation of Hebei Normal University

Shijiazhuang Science and Technology Plan Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3