Impacts of GNSS RO Data on Typhoon Forecasts Using Global FV3GFS with GSI 4DEnVar

Author:

Hong Tang-Xun1,Huang Ching-Yuang12,Lin Chen-Yang1,Lien Guo-Yuan3ORCID,Huang Zih-Mao3,Chen Shu-Ya2ORCID

Affiliation:

1. Department of Atmospheric Sciences, National Central University, Taoyuan 320317, Taiwan

2. GPS Science and Application Research Center, National Central University, Taoyuan 320317, Taiwan

3. Research and Development Center, Central Weather Bureau, Taipei 100006, Taiwan

Abstract

The FORMOSAT-7/COSMIC-2 satellites were launched in 2019, which can provide considerably larger amounts of radio occultation (RO) observations than the FORMOSAT-3/COSMIC satellites. The radio signals emitted from the global navigation satellites system (GNSS) are received by these low Earth orbit (LEO) satellites to provide the so-called bending angle accounting for bending of the rays after penetrating through the atmosphere. Deeper RO observations can be retrieved from FORMOSAT-7/COSMIC-2 for use in RO data assimilation to improve forecasts of tropical cyclones. This study used the global model FV3GFS with the finest grid resolution of about 25 km to simulate five selected typhoons over the western North Pacific, including Hagibis in 2019, Maysak and Haishen in 2020, and Kompasu and Rai in 2021. For each case, two experiments were conducted with and without assimilating FORMOSAT-7/COSMIC-2 RO bending angle. The RO data were assimilated by the GSI 4DEnVar data assimilation system for a total period of 4 days (with 6 h assimilation window) before the typhoon genesis time, followed by a forecast length of 120 h. The RO data assimilation improved the typhoon track forecasts on average of 42 runs. However, no significantly positive impacts, in general, were found on the typhoon intensity forecasts, except for Maysak. Analyses for Maysak attributed the improved intensity forecast mainly to the improved analyses for wind, temperature, and moisture in the mid-upper troposphere after data assimilation. Consequently, the RO data largely enhanced the evolving intensity of the typhoon at a more consistent movement as explained by the wavenumber-one vorticity budget analysis. On the other hand, a noted improvement on the wind analysis, but still with degraded temperature analysis above the boundary layer, also improved track forecast at some specific times for Hagibis. The predictability of typhoon track and intensity as marginally improved by use of the large RO data remains very challenging to be well explored.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3