Particle Size Matters: Distribution, Source, and Seasonality Characteristics of Airborne and Pathogenic Bacteria in Wastewater Treatment Plants

Author:

Wan Jianan1,Zhang Zhiruo2ORCID,Huo Yang13ORCID,Wang Xianze1,Wang Yifan1,Wu Jinghui12,Huo Mingxin1

Affiliation:

1. Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China

2. Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

3. Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

Abstract

Wastewater treatment plants (WWTPs) are a crucial source of bioaerosols, which account for both environmental and health hazards. Although various culture-based studies on bioaerosols have been reported, little knowledge remains about distribution and potential risks for more omnipresent non-culturable bacterial aerosols. Here, in summer, an eight-stage Andersen air sampler was applied to capture particles of various sizes from the atmospheric environment of eight treatment units from two WWTPs in northeastern China. Particles of various sizes in aeration tank (AT) were sampled in autumn and winter. The abundance and community composition of the bacterial aerosols were investigated using 16S rRNA gene sequencing. In order to explore the importance of particle size on community composition of bacterial aerosols, this study investigated the particle size distribution of bacterial aerosols in different treatment units. The results indicated that the sludge dewatering room was the major source of bacterial aerosols in both WWTPs, with the abundance of stage VII (0.65–1.1 μm) demonstrating a 4-fold to 9-fold increase when compared to any other treatment unit. The highest relative abundance of bacterial aerosols was in autumn, while the lowest was found in winter. However, most particles detected in autumn were larger than 4.7 µm in diameter, while submicron particles (less than 1.1 µm, over 40%) were detected primarily in winter. The most 15 dominant bacterial aerosol genera in were observed at submicron level, and about half of the genera (6 and 8) were detected as human pathogens, suggesting their easier penetration to human respiratory tracts. This study demonstrates that size distribution characteristics should be crucial information for the comprehensive assessment of the potential health risks of bacterial aerosols from WWTPs.

Funder

National Natural Science Foundation of China

Science and Technology Development Program of Jilin Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3