Characteristic Features of the Antarctic Surface Air Temperature with Different Reanalyses and In Situ Observations and Their Uncertainties

Author:

Xin Meijiao12,Li Xichen1,Zhu Jiang1,Song Chentao12,Zhou Yi12,Wang Wenzhu12,Hou Yurong12

Affiliation:

1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Antarctic surface air temperature (SAT) variability is characterized by strong seasonality and regionality, which are associated with the tropical–polar teleconnections and the radiative forcing caused by the concentration changes in ozone and other greenhouse gases. Nevertheless, the sparse in situ observations and the strong disagreement between different reanalysis datasets hinder coherent conclusions about Antarctic SAT variability. In this study, we use a newly developed statistical method, combined maximum covariance analysis (CMCA), to retrieve coherent SAT modes from six reanalysis datasets and 26 station observations. The results show that the Antarctic SAT variability may be dominated by a continental-wide warming/cooling mode, an East–West Antarctic seesaw mode, and a dipole SAT mode around West Antarctica. These SAT modes are strongly associated with three principal modes of Antarctic atmospheric circulation. Furthermore, all six reanalyses can represent these SAT modes well, compared with the observations, despite a clear deviation over the Antarctic Peninsula associated with the biases in the Foehn wind, which may not be clearly reproduced in a low-resolution reanalysis. This study provides an effective means by which to extract coherent signals from all reanalyses and observations to represent the Antarctic SAT variability, and to improve its predictability and projection.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3