Quantitative Mechanisms of the Responses of Abrupt Seasonal Temperature Changes and Warming Hiatuses in China to Their Influencing Factors

Author:

Huang Xing1,Ma Long1,Liu Tingxi1,Sun Bolin1,Chen Yang1,Qiao Zixu1

Affiliation:

1. Department of Resources and Environment, College of Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

Abrupt temperature changes and warming hiatuses have a great impact on socioeconomic systems; however, their mechanisms remain unclear. In this study, the quantitative mechanisms of the responses of abrupt seasonal temperature changes and warming hiatuses in China to their influencing factors were analysed using the monthly mean temperature (Tav), mean minimum temperature (Tnav), and mean maximum temperature (Txav) from 622 meteorological stations in China covering 1951–2018, the CMIP6 model data, and data at large spatial scales, including Atlantic multidecadal oscillation (AMO) data. The results showed that the contributions of the influencing factors to the abrupt changes in Tav, Tnav, and Txav showed large spatial variability and peaked in the spring and summer and bottomed out in the autumn. The Pacific decadal oscillation (PDO) greatly impacted the abrupt temperature changes in Northeast China and North China at a contribution rate of approximately 12%, strongly influenced the abrupt temperature changes south of the Yangtze River, and markedly influenced the abrupt temperature changes in Northwest China. The AMO had a large impact on temperature in most regions of China in all seasons except for the summer. The MEI mainly affected the abrupt seasonal temperature changes in the region between 25° N and 35° N. The Arctic oscillation (AO) substantially impacted the warming hiatuses in Northeast China in the winter at a contribution rate of approximately 12%. These influencing factors contributed less to warming hiatuses than to abrupt temperature changes. Among the regional influencing factors, AP and WS greatly impacted warming hiatuses, more so than abrupt temperature changes, while relative humidity (RH) and solar radiation (SR) contributed little to warming hiatuses.

Funder

Key technology project of Inner Mongolia Autonomous Region

Natural Science Foundation of Inner Mongolia Autonomous Region

Inner Mongolia Autonomous Region “Grassland talents” project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. Changes in atmospheric circulation over northern hemisphere oceans associated with the rapid warming of the 1920s;Fu;Int. J. Climatol.,2015

2. Comparison of characteristics of moving detrended fluctuation analysis with that of approximate entropy method in detecting abrupt dynamic change;He;Acta Phys. Sin.,2009

3. The research of detecting abrupt climate change with approximate entropy;Wang;Acta Phys. Sin.,2008

4. Fractional contribution of global warming and regional urbanization to intensifying regional heatwaves across Eurasia;Wang;Clim. Dyn.,2022

5. Monsoons climate change assessment;Wang;Bull. Amer. Meteor. Soc.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3