Extreme Temperature and Rainfall Events and Future Climate Change Projections in the Coastal Savannah Agroecological Zone of Ghana

Author:

Ankrah Johnson1ORCID,Monteiro Ana123,Madureira Helena13ORCID

Affiliation:

1. Geography Department, Faculty of Arts and Humanities, University of Porto, via Panorâmica Edgar Cardoso, 4150-564 Porto, Portugal

2. Research Centre for Territory, Transport and Environment (CITTA), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

3. Centre of Studies in Geography and Spatial Planning (CEGOT), Geography Department, University of Porto, via Panorâmica Edgar Cardoso, 4150-564 Porto, Portugal

Abstract

The global climate has changed, and there are concerns about the effects on both humans and the environment, necessitating more research for improved adaptation. In this study, we analyzed extreme temperature and rainfall events and projected future climate change scenarios for the coastal Savannah agroecological zone (CSAZ) of Ghana. We utilized the ETCCDI, the RClimDex software (version 1.0), the Mann–Kendall test, Sen’s slope estimator, and standardized anomalies to analyze homogeneity, trends, magnitude, and seasonal variations in temperature (Tmax and Tmin) and rainfall datasets for the zone. The SDSM was also used to downscale future climate change scenarios based on the CanESM2 (RCP 2.6, 4.5, and 8.5 scenarios) and HadCM3 (A2 and B2 scenarios) models for the zone. Model performance was evaluated using statistical methods such as R2, RMSE, and PBIAS. Results revealed more changepoints in Tmin than in Tmax and rainfall. Results again showed that the CSAZ has warmed over the last four decades. The SU25, TXn, and TN90p have increased significantly in the zone, and the opposite is the case for the TN10p and DTR. Spatially varied trends were observed for the TXx, TNx, TNn, TX10p, TX90p, and the CSDI across the zone. The decrease in RX1day, RX5day, SDII, R10, R95p, and R99p was significant in most parts of the central region compared to the Greater Accra and Volta regions, while the CDD significantly decreased in the latter two regions than in the former. The trends in CWD and PRCPTOT were insignificant throughout the zone. The overall performance of both models during calibration and validation was good and ranged from 58–99%, 0.01–1.02 °C, and 0.42–11.79 °C for R2, RMSE, and PBIAS, respectively. Tmax is expected to be the highest (1.6 °C) and lowest (−1.6 °C) across the three regions, as well as the highest (1.5 °C) and lowest (−1.6 °C) for the entire zone, according to both models. Tmin is projected to be the highest (1.4 °C) and lowest (−2.1 °C) across the three regions, as well as the highest (1.4 °C) and lowest (−2.3 °C) for the entire zone. The greatest (1.6 °C) change in mean annual Tmax is expected to occur in the 2080s under RCP8.5, while that of the Tmin (3.2 °C) is expected to occur in the 2050s under the same scenario. Monthly rainfall is expected to change between −98.4 and 247.7% across the three regions and −29.0 and 148.0% for the entire zone under all scenarios. The lowest (0.8%) and highest (79%) changes in mean annual rainfall are expected to occur in the 2030s and 2080s. The findings of this study could be helpful for the development of appropriate adaptation plans to safeguard the livelihoods of people in the zone.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference157 articles.

1. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Observed climate variability and change;Folland;Weather,2002

3. Global observed changes in daily climate extremes of temperature and precipitation;Alexander;J. Geophys. Res. Atmos.,2006

4. Recent observed and simulated changes in precipitation over Africa;Maidment;Geophys. Res. Lett.,2015

5. Changes in daily temperature and precipitation extremes in central and south Asia;Peterson;J. Geophys. Res. Atmos.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3