Multi-Criteria Decision Analysis for Optimizing CO2 and NH3 Removal by Scenedesmus dimorphus Photobioreactors

Author:

Uguz Seyit1ORCID,Arsu Talip2,Yang Xufei3,Anderson Gary3

Affiliation:

1. Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, 16240 Bursa, Turkey

2. Department of Tourism and Hotel Management, Vocational School of Social Sciences, Aksaray University, 68200 Aksaray, Turkey

3. Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA

Abstract

Numerous technologies have been investigated for mitigating air pollutant emissions from swine barns. Among them, algal photobioreactors (PBRs) can remove and utilize air pollutants such as CO2 and NH3 from barn exhaust. However, a challenge to PBR operation is that it involves multiple system input parameters and output goals. A key question is then how to determine the appropriate CO2 and NH3 concentrations in this case. Conventional statistical methods are inadequate for handling this complex problem. Multi-criteria decision-making (MCDM) emerges as a practical methodology for comparison and can be utilized to rank different CO2–NH3 interactions based on their environmental and biological performance. By employing MCDM methods, producers can effectively control the ratio of CO2 and NH3 concentrations, enabling them to identify the optimal range of operating parameters for various housing types, ensuring efficient pollutant mitigation. In this study, a multi-criteria decision-making (MCDM) approach was employed to support operation management. Specifically, influent CO2 and NH3 concentrations were optimized for three scenarios (the best biological, environmental, and overall performance), using a combination of two MCDM techniques. This study is anticipated to facilitate the system analysis and optimization of algae-based phytoremediation processes.

Funder

South Dakota State University Agricultural Experiment Station

Bursa Uludag University

Council of Higher Education of Turkey

USDA NIFA Hatch

Multistate Hatch Projects

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3