CloudY-Net: A Deep Convolutional Neural Network Architecture for Joint Segmentation and Classification of Ground-Based Cloud Images

Author:

Hu Feiyang1ORCID,Hou Beiping12ORCID,Zhu Wen12,Zhu Yuzhen1,Zhang Qinlong1

Affiliation:

1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. Zhejiang International Science and Technology Cooperation Base of Intelligent Robot Sensing and Control, Hangzhou 310023, China

Abstract

Ground-based cloud images contain a wealth of cloud information and are an important part of meteorological research. However, in practice, ground cloud images must be segmented and classified to obtain the cloud volume, cloud type and cloud coverage. Existing methods ignore the relationship between cloud segmentation and classification, and usually only one of these is studied. Accordingly, our paper proposes a novel method for the joint classification and segmentation of cloud images, called CloudY-Net. Compared to the basic Y-Net framework, which extracts feature maps from the central layer, we extract feature maps from four different layers to obtain more useful information to improve the classification accuracy. These feature maps are combined to produce a feature vector to train the classifier. Additionally, the multi-head self-attention mechanism is implemented during the fusion process to enhance the information interaction among features further. A new module called Cloud Mixture-of-Experts (C-MoE) is proposed to enable the weights of each feature layer to be automatically learned by the model, thus improving the quality of the fused feature representation. Correspondingly, experiments are conducted on the open multi-modal ground-based cloud dataset (MGCD). The results demonstrate that the proposed model significantly improves the classification accuracy compared to classical networks and state-of-the-art algorithms, with classification accuracy of 88.58%. In addition, we annotate 4000 images in the MGCD for cloud segmentation and produce a cloud segmentation dataset called MGCD-Seg. Then, we obtain a 96.55 mIoU on MGCD-Seg, validating the efficacy of our method in ground-based cloud imagery segmentation and classification.

Funder

Key R&D Program of Zhejiang Province

Natural Science Foundation of Zhejiang Province

“Pioneer” and “Leading Goose” R&D Program of Zhejiang Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Modal Medical Image Fusion for Enhanced Diagnosis using Deep Learning in the Cloud;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3