Characteristics of Airborne Pollutants in the Area of an Agricultural–Industrial Complex near a Petrochemical Industry Facility

Author:

Tsai Jiun-Horng12,How Vivien3,Wang Wei-Chi4,Chiang Hung-Lung4

Affiliation:

1. Department of Environmental Engineering, National Cheng Kung University, Tainan 701301, Taiwan

2. Research Center for Climate Change and Environment Quality, National Cheng Kung University, Tainan 701301, Taiwan

3. Department of Environmental and Occupational Health, University Putra Malaysia, Serdang 43400, Malaysia

4. Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 640301, Taiwan

Abstract

In the area of a petrochemical industrial site, ten monitoring stations are established to determine the airborne pollutants that are emitted, which include criteria air pollutants and 54 species of ozone formation precursors of volatile organic compounds (VOCs). The hourly pollutants are increased by human activities, such as traffic flow after 7:00 a.m., and ozone becomes more abundant as solar radiation increases in intensity. Monthly air pollutants are present in low concentrations during the rainy season from May to September and in high concentrations from October to April. Results show that VOC concentrations are low in the summer (average concentration 5.7–5.9 ppb) and more than double in the winter (11–12 ppb), with 52–63% alkanes, 18–24% aromatics, 11–22% alkenes and 4.7–7.1% alkynes. Ethane, toluene, propane, n-butane, ethylene and acetylene are the major VOCs, with an annual average concentration exceeding 0.50 ppb. In 2016–2020, the VOC concentration is decreased from 10.1 to 7.73 ppb, corresponding to the ozone formation potential (OFP) decrease from 84 to 61 μg-O3 m−3, with toluene, m,p-xylene, ethylene and propene being the most abundant species. The primary VOC sources are petrochemical industry sites, fuel combustion, vehicle exhaust emissions and evaporation, solvent application, industrial facilities and emission from farming vegetation.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference90 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3