Estimation of Surface Downward Longwave Radiation and Cloud Base Height Based on Infrared Multichannel Data of Himawari-8

Author:

Shao Jiangqi12ORCID,Letu Husi12ORCID,Ri Xu13,Tana Gegen4,Wang Tianxing5,Shang Huazhe1

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

4. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

5. School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China

Abstract

Surface downward longwave radiation (SDLR) is significant with regard to surface energy budgets and climate research. The uncertainty of cloud base height (CBH) retrieval by remote sensing induces the vast majority of SDLR estimation errors under cloudy conditions; reliable CBH observation and estimation are crucial for determining the cloud radiative effect. This study presents a CBH retrieval methodology built from 10 thermal spectral data from Himawari-8 (H-8) observations, utilizing the random forest (RF) algorithm to fully account for each band’s contribution to CBH. The algorithm utilizes only infrared band data, making it possible to obtain CBH 24 h a day. Considering some factors that can significantly affect the CBH estimation, RF models are trained for different clouds using inputs from multiple H-8 channels together with geolocation information to target CBH derived from CloudSat/CALIPSO combined measurements. The validation results reveal that the new methodology performs well, with a root-mean-square error (RMSE) of only 1.17 km for all clouds. To evaluate the effect of CBH on SDLR estimation, an all-sky SDLR estimation algorithm based on previous CBH predictions is proposed. The new SDLR product not only has a resolution that is noticeably higher than that of benchmark products of the SDLR, such as the Clouds and the Earth’s Radiant Energy System (CERES) and the next-generation reanalysis (ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF), but it also has greater accuracy, with an RMSE of 21.8 W m−2 for hourly surface downward longwave irradiance (SDLI).

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3