Impacts of Complex Terrain Features on Local Wind Field and PM2.5 Concentration

Author:

Song Yuqiang1,Shao Min2ORCID

Affiliation:

1. Dalian Meteorological Observatory, Dalian 116000, China

2. School of Environment, Nanjing Normal University, Nanjing 210046, China

Abstract

Complex topography has nonnegligible effects on local meteorological conditions as well as the transportation of atmospheric pollutants, which deserves more extensive study. In this study, the impacts of complex terrain features (mountains and river valleys) on local wind field and PM2.5 concentration in a typically developed mega city along the Yangtze River were studied numerically using the WRFCALMET-CALPUFF system. The impacts of different model grid and terrain horizontal resolutions were firstly investigated against observations. Then, the impacts of terrain features, specifically the impacts of Mt. LS and the Yangtze River, on wind field and PM2.5 transportation were analyzed by “removing” Mt. LS and the Yangtze River from the meteorological diagnostic model and simulating the dispersion of PM2.5 from three virtual point sources in the chemical model. Results showed that: (i) higher terrain elevation and model horizontal resolutions, and updated land cover types, can effectively improve the prediction of wind direction where terrain features are complex; (ii) Mt. LS mainly acts as a barrier, and ridge wind is weakened after “removing” Mt. LS; (iii) after “removing” the Yangtze River, the transport of PM2.5 along the Yangtze River is weakened; (iv) the simulation of PM2.5 from virtual point sources showed that Mt. LS could have an effect of up to 55% on the PM2.5 concentration in Nanjing. This study showed that the local complex topographies have an obvious effect on the local wind field and the concentration of PM2.5. Therefore, it is important to consider the influence of local topographies and land cover types when predicting local wind field and air quality.

Funder

Carbon Peak and Carbon Neutralization of Jiangsu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3