Detection of Air Pollution in Urban Areas Using Monitoring Images

Author:

Chu Ying1ORCID,Chen Fan1,Fu Hong2ORCID,Yu Hengyong3ORCID

Affiliation:

1. Department of Artificial Intelligence, Shenzhen University, Shenzhen 518060, China

2. Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China

3. Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

Abstract

Air quality monitoring in polluted environments is of great significance to human health. Traditional methods use various pieces of meteorological equipment, which have limited applications in complex terrains and high costs. In this paper, a novel idea is put forward to solve the problem of air pollution monitoring in urban areas. We investigate whether air quality can be assessed visually by examining the haziness of photos from a far distance. Specifically, the correlation between the air quality indexes, such as the AQI, PM2.5, and PM10, of real outdoor scenarios and the haziness level evaluation scores of the monitoring images is calculated. The results show that the objective indicators can indeed reflect the level of air pollution, and the degree of correlation is invariant to the image size. To apply this new observation to a practical system, a novel method called fastDBCP (fast dark and bright channel prior) is developed. Based on a down-sampling strategy, a ratio is calculated between the dark and bright channel prior information in scaled images and adopted as the visual index of air pollution. Our experimental results show that the proposed metric not only demonstrates advantages in terms of its correlation degree and computational speed, but also shows a high level of classification accuracy compared to that of competing metrics.

Funder

Stabilization Support Plan for Shenzhen Higher Education Institutions

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Image Quality Assessment for Air Quality Index Estimation;2024 11th International Conference on Wireless Networks and Mobile Communications (WINCOM);2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3