The Lagging Effect of Precipitation on NAIs Concentrations on Rainy Days in Wuyi Mountain National Park, China

Author:

Xie Ziyang12,Li Changshun13,Lin Yan3,Liu Jinfu12,He Zhongsheng12ORCID

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Fujian Universities for Ecology and Resource Statistics, Fuzhou 350002, China

3. Fujian Meteorological Service Center, Fuzhou 350001, China

Abstract

Precipitation (PRE) is an essential factor that affects the negative air ions (NAIs) concentrations. However, the mechanism of NAIs concentrations and their influencing factors on rainy and non-rainy days remains unclear. Here, we used hourly data of NAIs concentrations and meteorological data in 2019 to analyze the distribution of NAIs concentrations and its influencing factors on rainy and non-rainy days in the Wuyi Mountain National Park (WMNP) of China, which was listed as a World Cultural and Natural Heritage Site in 1999. The results indicated that the NAIs concentrations on rainy days were significantly higher than on non-rainy days. However, the NAIs concentrations on rainy days were slightly higher than on the first and second days after rainy days. Then, the NAIs concentrations were significantly reduced on the third day and after that. Thus, rainy days lead to a 2-day lag in the smooth reduction of NAIs on non-rainy days after rainy days. NAIs concentrations were significantly correlated with the relative humidity (RHU) on both rainy and non-rainy days. By analyzing the meteorological factors on NAIs for ranking the feature importance scores on rainy and non-rainy days, PRE was ranked first on rainy days, and sea level pressure (PRS_Sea) and temperature (TEM) were ranked first and second on non-rainy days, respectively. Based on the univariate linear regression model (ULRM), NAIs concentrations responded strongly (higher absolute slope values) to RHU on rainy days and to pressure (PRS), visibility (VIS), water vapor pressure (VAP), TEM, and ground surface temperature (GST) on non-rainy days. The results highlight the importance of PRE in the lag time of NAIs concentrations on rainy and non-rainy days.

Funder

Smart Weather Service Capacity Building

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3