Human Activities Accelerated Increase in Vegetation in Northwest China over the Three Decades

Author:

Yang Liqin12,Fu Hongyan3,Zhong Chen1,Zhou Jiankai1,Ma Libang12ORCID

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730000, China

2. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730000, China

3. Yanchiwan National Nature Reserve Management and Protection Center of Gansu Province, Jiuquan 735000, China

Abstract

Natural ecosystems are changing more quickly because of human activities, the type and intensity of which are directly correlated with vegetation greenness. To effectively determine how human activities affect trends in vegetation under climate change, we must differentiate between various types of human activities. The GTWR model can study the spatiotemporal non-stationary relationship between the NDVI trend and climate change. The GTWR model was incorporated into multiple climate variables and improved residual analysis to quantify the contributions of climate change and human activities on vegetation change trends in the Hexi region during different periods. This study divides human activities into four groups based on land use change: urbanization, agricultural expansion, desertification, and ecological restoration to further investigate their contribution to vegetation greenness change. The results showed that in 56.9% of the significant vegetation greening trends between 1982 and 2015, climate factors contributed only 7.4%, while human factors contributed a significant 22.7%. Since the ecological restoration project implemented in 2000, the expansion intensity of ecological restoration and urbanization increased significantly, followed by agricultural expansion and desertification. For the considerable greening trends in the Hexi region, the ecological restoration project contributed 26.7%, while agricultural expansion and urbanization contributed 17.5% and 4.6%, respectively. This study aims to provide new insights for more accurate simulation and evaluation of the interaction effects of climate change and human socio-economic development on vegetation growth.

Funder

the Natural Science Foundation Project of Gansu Province of China

2023 University Teachers Innovation Foundation Project of Ministry of Education of Gansu Province of China

Youth Scholars Research Ability Enhancement Program of Northwest Normal University of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3