Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia

Author:

Antokhina Olga1,Antokhin Pavel12ORCID,Gochakov Alexander13ORCID,Zbirannik Anna14ORCID,Gazimov Timur34

Affiliation:

1. V.E. Zuev Institute of Atmospheric Optics of SB RAS, Tomsk 663055, Russia

2. Department of Meteorology and Physics of Near-Earth Space, Irkutsk State University, Irkutsk 664003, Russia

3. Siberian Regional Hydrometeorological Research Institute, Novosibirsk 630099, Russia

4. Department of Meteorology and Climatology, Tomsk State University, Tomsk 634050, Russia

Abstract

The socioeconomic impacts caused by floods in the south of Eastern Siberia (SES), and the expected increase in precipitation extremes over northern Eurasia, have revealed the need to search for atmospheric circulation patterns that cause extreme precipitation events (EPE) in SES, as well as their changes. We investigate the circulation patterns causing extreme precipitation in SES and Mongolia, by examining the instability and moisture transport associated with potential vorticity (PV) dynamics during two time periods: 1982–1998 and 1999–2019. The EPE were characterized by an increase in instability within the precipitation area, which was compensated by stability around the area, with the East Asian summer monsoon transport being enhanced. PV in the subtropical regions and mid-latitudes has shown the amplification of positive and negative PV anomalies to the southeast and northwest of Lake Baikal, respectively. The PV contours for EPE have shapes of cyclonic wave breaking and cutoff low. EPE accompanied by wave breaking are characterized by strong redistribution areas, with extremely high and low stability and moisture. This can lead to the coexistence of floods and droughts, and in part was the driver of the earlier revealed “seesaw” precipitation mode over Mongolia and SES. We suggest a shift of extreme precipitation to the northwest has occurred, which was probably caused by the wave propagation change.

Funder

RSF

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3