Improving Intra-Urban Prediction of Atmospheric Fine Particles Using a Hybrid Deep Learning Approach

Author:

Zhang Zhengyu1,Ren Jiuchun1,Chang Yunhua2

Affiliation:

1. Department of Communication Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Growing evidence links intra-urban gradients in atmospheric fine particles (PM2.5), a complex and variable cocktail of toxic chemicals, to adverse health outcomes. Here, we propose an improved hierarchical deep learning model framework to estimate the hourly variation of PM2.5 mass concentration at the street level. By using a full-year monitoring data (including meteorological parameters, hourly concentrations of PM2.5, and gaseous precursors) from multiple stations in Shanghai, the largest city in China, as a training dataset, we first apply a convolutional neural network to obtain cross-domain and time-series features so that the inherent features of air quality and meteorological data associated with PM2.5 can be effectively extracted. Next, a Gaussian weight calculation layer is used to determine the potential interaction effects between different regions and neighboring stations. Finally, a long and short-term memory model layer is used to efficiently extract the temporal evolution characteristics of PM2.5 concentrations from the previous output layer. Further comparative analysis reveals that our proposed model framework significantly outperforms previous benchmark methods in terms of the stability and accuracy of PM2.5 prediction, which has important implications for the intra-urban health assessment of PM2.5-related pollution exposures.

Funder

National Natural Science Foundation of China

Jiangsu Natural Science Fund for Excellent Young Scholars

Science and Technology Commission of the Shanghai Municipality

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3