Indoor Air Quality in the Most Crowded Public Places of Tehran: An Inhalation Health Risk Assessment

Author:

Derikvand Ahmad1,Taherkhani Ali1,Hassanvand Mohammad Sadegh12,Naddafi Kazem12,Nabizadeh Ramin12,Shamsipour Mansour23,Niazi Sadegh4,Heidari Mohsen5,Mokammel Adel1ORCID,Faridi Sasan12ORCID

Affiliation:

1. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417993362, Iran

2. Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran 1417993362, Iran

3. Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran 1417993362, Iran

4. International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia

5. Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran

Abstract

Satisfying indoor air quality in public environments has become essential in cities. In the present study, indoor PM2.5, CO2, NO2, SO2, nicotine, and BTEX have been assessed in 12 categories of public places. The highest average concentrations of PM2.5, NO2, and SO2 were observed in waterpipe cafés (233, 29.6, and 5.1 µg/m3), whereas the lowest concentrations were found in health clubs and hospitals, respectively. Moreover, indoor BTEX concentration varied from 69.5 µg/m3 (passenger terminals) to 1739.2 µg/m3 (elderly care centers). Given nicotine, the highest concentrations were found in waterpipe cafés, ranging from approximately 11.0 to 50 µg/m3. The mean hazard quotient (HQ) and Hazard Index (HI) for benzene, toluene, ethylbenzene, and xylene were calculated in all types of public environments, and results showed that the amount of HQ and HI in none of the places was more than 1. Furthermore, the lifetime cancer risk (LTCR) exceeded the guideline threshold in hospitals, restaurants, elderly care centers, passenger terminals, movie theaters, and beauty salons. The findings of our study indicate that the indoor air quality in most public settings within Tehran city is not acceptable and necessitates appropriate management. These findings underscore the importance of monitoring indoor air quality and implementing effective strategies to mitigate exposure to air pollutants.

Funder

Eastern Mediterranean Region, World Health Organization Office in Iran

Institute for Environmental Research (IER), Tehran University of Medical Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3