Ice Core 17O Reveals Past Changes in Surface Air Temperatures and Stratosphere to Troposphere Mass Exchange

Author:

Aggarwal Pradeep K.1,Longstaffe Frederick J.2ORCID,Schwartz Franklin W.3

Affiliation:

1. International Atomic Energy Agency, 1400 Vienna, Austria

2. Department of Earth Sciences, The University of Western Ontario, London, ON N6A 3K7, Canada

3. School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA

Abstract

In this study, we have investigated the oxygen isotope compositions (δ17O and δ18O) of modern rain and ice cores using published isotopic data. We find that, contrary to existing interpretations, precipitation δ17O is influenced by two factors: mass-dependent fractionation (MDF), which occurs during ocean evaporation, and mass-independent fractionation (MIF), which happens in the stratosphere. The MDF contribution remains constant and can be understood by studying tropical rain, as the overall movement of mass in the tropics is upward toward the stratosphere. On the other hand, the MIF effect comes from the mixing of stratospheric air in the troposphere, which is a result of the Brewer–Dobson circulation. This MIF effect on precipitation 17O increases from the tropics toward the poles and is observed consistently in modern precipitation and ice cores. The relative δ17O and δ18O composition, denoted as ∆‘17O, in modern precipitation can be calibrated with surface air temperature, creating a new and independent tool for estimating past temperatures. We used this calibration along with the ∆‘17O of Antarctic and Greenland ice cores, and our reconstructed past temperatures are in excellent agreement with those derived from borehole thermometry or gas phase analysis of air trapped in the ice. The ∆‘17O method overcomes the problems associated with using δ18O alone for paleothermometry. Our findings align with climate models that suggest a weakening of the Brewer–Dobson circulation during the Last Glacial Maximum. Furthermore, our approach could be used to monitor future changes in stratosphere–troposphere mass exchange in response to a warming climate caused by increasing greenhouse gases.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference74 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3