Effects of Landscape Patterns on Atmospheric Particulate Matter Concentrations in Fujian Province, China

Author:

Lin Fengyi1,Chen Xingwei123

Affiliation:

1. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

2. Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350007, China

3. State Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China

Abstract

Based on the observation data from 37 national ambient air automatic monitoring stations and the land use/cover data in Fujian Province, the effects of land use/cover on the annual and seasonal variations in the air quality index (AQI), PM2.5 concentration and PM10 concentration are analyzed. In addition, buffer zones with different radii are established to calculate landscape pattern metrics and the influences of landscape patterns on the AQI, PM2.5 concentration and PM10 concentration at different scales are discussed. The results show that land use/cover types have remarkable impacts on the variations in the atmospheric particulate matter concentrations. The AQI and PM10 concentration are the highest for construction land, and the PM2.5 concentration is the highest for cultivated land. The seasonal variations in all air pollutant concentrations show similar characteristics, i.e., high in spring and winter and low in summer and autumn. Different landscape metrics have diverse effects on atmospheric particulate matter concentrations at different scales. In the buffer zone with a 5000 m radius, the patch number and patch density of forest land are positively correlated with the PM2.5 concentration, while the edge density of construction land has a negative correlation with it, indicating that landscape fragmentation affects the PM2.5 concentration. More fragmented forest land has a weaker effect on the reduction in the PM2.5 concentration, and more fragmented construction land has a weaker effect on the increase in the PM2.5 concentration. Moreover, the seasonal variations in the atmospheric particulate matter concentrations are different under different land use/cover types. Except for autumn, the AQI and PM2.5 concentration are most noticeably affected by forest land in all seasons, showing negative correlations. In autumn, the impacts of cultivated land on the AQI and PM2.5 concentration are more pronounced. The PM10 concentration is substantially affected by forest land in spring and summer and is markedly influenced by construction land in autumn and winter. The analysis of the landscape metrics of forest land and construction land at different scales indicates that the optimal scale is 5000 m for studying the annual average of the AQI and PM10 concentration and is 3000 m for investigating the annual average of the PM2.5 concentration. The optimal scales to research the seasonal variations in the AQI, PM2.5 and PM10 concentrations are 4000–5000 m for forest land and construction land, while the optimal scale is 1000 m for cultivated land to research the AQI and PM2.5 in autumn. This study can provide a scientific basis for the optimization of land use/cover and landscape patterns in Fujian Province, the planning and management of green space and the selection of research scales in the future.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference32 articles.

1. Chemical composition and source identification of PM2.5, in the suburb of Shenzhen, China;Dai;Atmos. Res.,2013

2. Characteristics and source analysis of Water-soluble ions in fine particulate matter PM2.5 in Xinxiang City in autumn;Yan;Acta Sci. Circumstantiae,2017

3. Pollution characteristics and sources of fine particulate matter in the main urban area of Chongqing;Chen;Acta Sci. Circumstantiae,2016

4. Characteristics of PAHs pollution in fine particulate matter during heating period in Shijiazhuang City;Duan;Res. Environ. Sci.,2016

5. Research progress in monitoring and controlling urban fine particulate matter PM2.5;Song;J. Green Sci. Technol.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3