Application and Improvement of the Particle Swarm Optimization Algorithm in Source-Term Estimations for Hazardous Release

Author:

Lu Jinshu1,Huang Mengqing1,Wu Wenfeng1,Wei Yonghui1,Liu Chong1

Affiliation:

1. Department of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China

Abstract

Hazardous gas release can pose severe hazards to the ecological environment and public safety. The source-term estimation of hazardous gas leakage serves a crucial role in emergency response and safety management practices. Nevertheless, the precision of a forward diffusion model and atmospheric diffusion conditions have a significant impact on the performance of the method for estimating source terms. This work proposes the particle swarm optimization (PSO) algorithm coupled with the Gaussian dispersion model for estimating leakage source parameters. The method is validated using experimental cases of the prairie grass field dispersion experiment with various atmospheric stability classes. The results prove the effectiveness of this method. The effects of atmospheric diffusion conditions on estimation outcomes are also investigated. The estimated effect in extreme atmospheric diffusion conditions is not as good as in other diffusion conditions. Accordingly, the Gaussian dispersion model is improved by adding linear and polynomial correction coefficients to it for its inapplicability under extreme diffusion conditions. Finally, the PSO method coupled with improved models is adapted for the source-term parameter estimation. The findings demonstrate that the estimation performance of the PSO method coupled with improved models is significantly improved. It was also found that estimated performances of source parameters of two correction models were significantly distinct under various atmospheric stability classes. There is no single optimal model; however, the model can be selected according to practical diffusion conditions to enhance the estimated precision of source-term parameters.

Funder

Zhoushan Science and Technology Bureau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3