Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data

Author:

Li XijiaORCID,Qu YingORCID,Xiao ZhiqiangORCID

Abstract

Global vegetation greening during recent decades has been observed from various remote sensing data. The global and regional climate can be altered by an increase in carbon storage, as well as changes in land surface albedo (LSA) and evaporation. However, the LSA changes induced by global vegetation greening are still not clear, and contrasting responses of LSA to vegetation changes were reported in previous studies. In this study, we analyzed the LSA in response to global vegetation greening using the Global Land Surface Satellite (GLASS) data and a vegetation-induced LSA change model. The results showed that vegetation greening trends could be observed worldwide, which resulted in contrasting LSA responses at regional scales (LSA increased as leaf area index (LAI) increased, or LSA decreased as LAI increased). Moreover, these contrasting LSA responses to global vegetation greening were effectively explained by the albedo difference between a vegetation and soil background. The results provide new insights into the relationship between LSA changes and global vegetation dynamics, and can support recommendations for policies of vegetation protection, and large-scale afforestation and deforestation.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jilin Province Education Department

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference41 articles.

1. Characteristics, drivers and feedbacks of global greening;Piao;Nat. Rev. Earth Environ.,2019

2. Optical vegetation indices for monitoring terrestrial ecosystems globally;Zeng;Nat. Rev. Earth Environ.,2022

3. Large discrepancies of global greening: Indication of multi-source remote sensing data;Wang;Glob. Ecol. Conserv.,2022

4. Where Are Global Vegetation Greening and Browning Trends Significant?;Mahecha;Geophys. Res. Lett.,2021

5. Greening of the Earth and its drivers;Zhu;Nat. Clim. Change,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3