Black Carbon Emissions, Transport and Effect on Radiation Forcing Modelling during the Summer 2019–2020 Wildfires in Southeast Australia

Author:

Duc Hiep Nguyen123ORCID,Azzi Merched1,Zhang Yang45,Kirkwood John1,White Stephen1,Trieu Toan1,Riley Matthew1ORCID,Salter David1,Chang Lisa Tzu-Chi4ORCID,Capnerhurst Jordan1,Ho Joseph1,Gunashanhar Gunaratnam1,Monk Khalia1ORCID

Affiliation:

1. Department of Planning and Environment (DPE), New South Wales, Lidcombe, NSW 2141, Australia

2. Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Vietnam

3. Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam

4. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA

5. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

Abstract

The emission of black carbon (BC) particles, which cause atmospheric warming by affecting radiation budget in the atmosphere, is the result of an incomplete combustion process of organic materials. The recent wildfire event during the summer 2019–2020 in south-eastern Australia was unprecedented in scale. The wildfires lasted for nearly 3 months over large areas of the two most populated states of New South Wales and Victoria. This study on the emission and dispersion of BC emitted from the biomass burnings of the wildfires using the Weather Research Forecast–Chemistry (WRF–Chem) model aims to determine the extent of BC spatial dispersion and ground concentration distribution and the effect of BC on air quality and radiative transfer at the top of the atmosphere, the atmosphere and on the ground. The predicted aerosol concentration and AOD are compared with the observed data using the New South Wales Department of Planning and Environment (DPE) aethalometer and air quality network and remote sensing data. The BC concentration as predicted from the WRF–Chem model, is in general, less than the observed data as measured using the aethalometer monitoring network, but the spatial pattern corresponds well, and the correlation is relatively high. The total BC emission into the atmosphere during the event and the effect on radiation budget were also estimated. This study shows that the summer 2019–2020 wildfires affect not only the air quality and health impact on the east coast of Australia but also short-term weather in the region via aerosol interactions with radiation and clouds.

Funder

U.S. NOAA Office of Climate AC4 Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3