Theoretical Study on the Mechanisms, Kinetics, and Toxicity Evaluation of OH-Initiated Atmospheric Oxidation Reactions of Coniferyl Alcohol

Author:

Zhang Yu1,Wei Bo123ORCID,Tang Rongzhi2

Affiliation:

1. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China

3. Environment Research Institute, Shandong University, Qingdao 266237, China

Abstract

In this paper, we investigated the mechanisms, kinetics, and toxicity evaluation of the OH-initiated reaction of coniferyl alcohol (4-(3-hydroxy-1-propenyl)-2-methoxyphenol) in the atmosphere using theoretical calculations. The initial reaction of coniferyl alcohol with OH radicals had two pathways, H-abstraction and OH-addition reactions. The total reaction rate constants were 2.32 × 10−9 cm3 molecule−1 s−1 (in gas-phase) and 9.44 × 109 s−1 M−1 (in liquid-phase) for the preliminary reactions of coniferyl alcohol with OH radicals at 298 K, respectively, and the half-lives of the total reaction (including all initial H-abstraction and OH-addition reactions) of coniferyl alcohol with OH radical in the atmosphere, urban and remote clouds were 8.3 × 10−2 h, 5.83 × 103 h and 9.27 × 102 h, respectively. The temperature had a strong and positive influence on the initial reaction rate constant. The branching ratios of H-abstraction and OH-addition reactions were 3.68% and 97.69%, respectively, making the OH-addition reactions become dominant reactions. The ecotoxicity evaluation revealed that the toxicity levels of coniferyl alcohol and its products were similar and non-toxic. However, all these products have developmental toxicity, with most of them having no mutagenicity. Therefore, further attention should be paid to the oxidation process and product toxicity evaluation of coniferyl alcohol in the atmosphere.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation Project

Hong Kong Scholars Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3