Effects of Climate Change and Nitrogen Addition on Carbon Loss in Alpine Wetland of Qinghai–Tibet Plateau

Author:

Xu Runhong123,Wang Zhigang123,Zhu Jinfu234

Affiliation:

1. College of Geographic Science, Qinghai Normal University, Xining 810008, China

2. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China

3. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Qinghai Normal University, Xining 810008, China

4. College of Life Science, Qinghai Normal University, Xining 810008, China

Abstract

Soil microorganisms and soil organic carbon (SOC) play important roles in ecosystem cycling, but there is a lack of clarity about the effects of nitrogen addition on soil microorganisms and SOC, as well as the key microbial taxa that influence SOC. This study was conducted in the alpine wetland of Xiaopo Lake in the Qinghai Lake basin, using NH4NO3 as the nitrogen source, three nitrogen addition gradients (N2: 2 g/m2, N5: 5 g/m2, N10: 10 g/m2), and a blank control treatment (N0: 0 g/m2), with three replicate experiments for each treatment. The main findings were as follows: (1) Both increased soil temperature and decreased precipitation reduced SOC content. SOC content gradually decreased with increasing nitrogen concentration; SOC was reduced by 3.36–29.54% and 8.57–26.66% at 0–15 cm and 15–30 cm soil depths, respectively. (2) Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria were the main dominant species, and their changes determined the changes in the entire bacterial community. The relative abundance of Proteobacteria and Actinobacteria decreased under nitrogen addition; Acidobacteria increased significantly; and Chloroflexi did not change significantly. The overall abundance and diversity of soil bacteria showed an increasing trend. The number of soil bacteria is a key factor affecting SOC content, and an increase in the number and diversity of soil bacteria enhances their decomposition capacity, and thus, reduces SOC content. (3) Increased soil temperatures and decreased precipitation are associated with decreased SOC and are the main climatic factors affecting SOC. This study provides a reference for the rational utilization and management of wetland ecosystems under climate change.

Funder

Natural Science Foundation of Qinghai Province, China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3