Comparative Evaluation of Rainfall Forecasts during the Summer of 2020 over Central East China

Author:

Guo Yakai12ORCID,Shao Changliang3ORCID,Su Aifang12

Affiliation:

1. China Meteorological Administration Henan Meteorological Bureau, Zhengzhou 450003, China

2. China Meteorological Administration Key Laboratory of Agro-Meteorological Support and Application Technology of Henan Province, Zhengzhou 450003, China

3. China Meteorological Administration Meteorological Observation Centre, Beijing 100080, China

Abstract

By using various skill scores and spatial characteristics of spatial verification methods and traditional techniques of the model evaluation tool, the gridded precipitation observation, known as Climate Prediction Center Morphing Technique, gauge observation and three datasets that were derived from local, Shanghai, and Grapes models, respectively, were conducted to assess the 3 lead day rainfall forecast with 0.5 day intervals during the summer of 2020 over Central East China. Results have shown that the local model generally outperforms the other two for the most skill scores but usually with relatively larger uncertainties than the Shanghai model, and it has the least displacement errors for moderate rainfall among the three datasets. However, the rainfall of the Grapes model has been heavily underestimated and is accompanied with a large displacement error. Both the local and Shanghai model can effectively forecast the large-scale convection and rainstorms but over forecast the local convection, while the local model likely over forecasts the local rainstorms. In addition, the Shanghai model slightly favors over forecasting on a broad scale range and a broad threshold range, and the local model slightly misses the rainfall exceeding 100 mm. Generally, for a broadly comparative evaluation on rainfall, the popular dichotomous methods should be recommended when considering reasonable classification of thresholds if the accuracy is highly demanding. In addition, most spatial methods are suggested to conduct with proper pre-handling of non-rainfall event cases. Especially, the verification metrics including spatial characteristic difference information should be recommended to emphasize rewarding the severe events forecast under a global warming background.

Funder

Science and Technology Project on Innovation Ecosystem Construction at Zhengzhou Supercomputing Center

China Environmental Protection Foundation Blue Mountain Project

China Meteorological Administration Meteorological Observation Centre “Chip Project”

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3