Affiliation:
1. China Meteorological Administration Henan Meteorological Bureau, Zhengzhou 450003, China
2. China Meteorological Administration Key Laboratory of Agro-Meteorological Support and Application Technology of Henan Province, Zhengzhou 450003, China
3. China Meteorological Administration Meteorological Observation Centre, Beijing 100080, China
Abstract
By using various skill scores and spatial characteristics of spatial verification methods and traditional techniques of the model evaluation tool, the gridded precipitation observation, known as Climate Prediction Center Morphing Technique, gauge observation and three datasets that were derived from local, Shanghai, and Grapes models, respectively, were conducted to assess the 3 lead day rainfall forecast with 0.5 day intervals during the summer of 2020 over Central East China. Results have shown that the local model generally outperforms the other two for the most skill scores but usually with relatively larger uncertainties than the Shanghai model, and it has the least displacement errors for moderate rainfall among the three datasets. However, the rainfall of the Grapes model has been heavily underestimated and is accompanied with a large displacement error. Both the local and Shanghai model can effectively forecast the large-scale convection and rainstorms but over forecast the local convection, while the local model likely over forecasts the local rainstorms. In addition, the Shanghai model slightly favors over forecasting on a broad scale range and a broad threshold range, and the local model slightly misses the rainfall exceeding 100 mm. Generally, for a broadly comparative evaluation on rainfall, the popular dichotomous methods should be recommended when considering reasonable classification of thresholds if the accuracy is highly demanding. In addition, most spatial methods are suggested to conduct with proper pre-handling of non-rainfall event cases. Especially, the verification metrics including spatial characteristic difference information should be recommended to emphasize rewarding the severe events forecast under a global warming background.
Funder
Science and Technology Project on Innovation Ecosystem Construction at Zhengzhou Supercomputing Center
China Environmental Protection Foundation Blue Mountain Project
China Meteorological Administration Meteorological Observation Centre “Chip Project”
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献