Impacts of UHI on Heating and Cooling Loads in Residential Buildings in Cities of Different Sizes in Beijing–Tianjin–Hebei Region in China

Author:

Meng Fanchao1,Ren Guoyu23,Zhang Ruixue4

Affiliation:

1. Tianjin Climate Center, Tianjin 300074, China

2. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

3. National Climate Center, China Meteorological Administration, Beijing 100081, China

4. Jianke EET Co., Ltd., Beijing 100013, China

Abstract

The heating and cooling energy consumption levels of urban buildings account for a large and rapidly growing proportion of the total end-use energy consumption of society. The urban heat island (UHI) effect is an important factor influencing the spatiotemporal variations in the heating and cooling energy consumption levels of buildings. However, there is a lack of research on the impact of the UHI on the heating and cooling energy consumption of buildings in cities of different sizes in the Beijing–Tianjin–Hebei urban agglomeration, which is the most urbanized region in northern China. We selected rural reference stations using the remote sensing method, and applied an hourly data set from automatic weather stations, to examine the impact of the UHI on the typical residential building heating and cooling loads in three cities of varied sizes in the Beijing–Tianjin–Hebei urban agglomeration through building energy simulation. The main conclusions were as follows. As the UHI intensity (UHII) increased, the heating load difference between urban and rural areas decreased, while the cooling load difference between urban and rural areas increased in the cities. The average daily heating loads in the urban areas of Beijing, Tianjin, and Shijiazhuang were 8.14, 10.71, and 2.79% lower than those in their rural areas, respectively, while the average daily cooling loads in the urban areas were 6.88, 6.70, and 0.27% higher than those in their rural areas, respectively. Moreover, the absolute hourly load differences between urban and rural areas were significantly larger during the heating periods than during the cooling periods, with the former characterized by being strong at night and weak during the day. During the peak energy load period, the contribution of the UHI to the peak load of residential buildings varied between the cities. During the stable high-load period, from 18:00 to 07:00 the next day in the heating periods (from 18:00 to 05:00 the next day in the cooling periods), the hourly loads in the urban areas of Beijing, Tianjin, and Shijiazhuang were 3.15 (2.48), 3.88 (1.51), and 1.07% (1.09%) lower (higher) than those in their rural areas, respectively. Our analysis highlights the necessity to differentiate the energy supplies for the heating and cooling of urban buildings in different sized cities in the region.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Research Fund of Chinese Academy of Meteorological Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3