Global Navigation Satellite System-Based Retrieval of Precipitable Water Vapor and Its Relationship with Rainfall and Drought in Qinghai, China

Author:

Zhang Shengpeng123ORCID,Liu Fenggui14,Li Hongying12ORCID,Zhou Qiang14,Chen Qiong14,Ma Weidong1,Luo Jing1,Huang Yongsheng12

Affiliation:

1. College of Geographical Sciences, Qinghai Normal University, Xining 810008, China

2. Big Data Center of Geospatial and Nature Resources of Qinghai Province, Xining 810008, China

3. Qinghai Basic Surveying and Mapping Institute, Xining 810001, China

4. Academy of Plateau Science and Sustainability, Xining 810008, China

Abstract

Qinghai Province is situated deep in inland China, on the Qinghai-Tibet plateau, and it has unique climate change characteristics. Therefore, understanding the temporal and spatial distributions of water vapor in this region can be of great significance. The present study applied global navigation satellite system (GNSS) technology to retrieve precipitable water vapor (PWV) in Qinghai and analyzed its relationship with rainfall and drought. Firstly, radiosonde (RS) data is used to verify the precision of the surface pressure (P) and temperature (T) from the fifth-generation atmosphere reanalysis data set (ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as the zenith troposphere delay (ZTD), calculated based on the data from continuously operating reference stations (CORS) in Qinghai. Secondly, a regional atmospheric weighted mean temperature (Tm) (QH-Tm) model was developed for Qinghai based on P, T, and relative humidity, as well as the consideration of the influence of seasonal changes in Tm. Finally, the PWV of each CORS in Qinghai was calculated using the GNSS-derived ZTD and ERA5-derived meteorological data, and its relationship with rainfall and drought was evaluated. The results show that the ERA5-derived P and T have high precision, and their average root mean square (RMS), mean absolute error (MAE) and bias were 1.06/0.85/0.01 hPa and 2.98/2.42/0.03 K, respectively. The RMS, MAE and bias of GNSS-derived ZTD were 13.2 mm, 10.3 mm and −1.8 mm, respectively. The theoretical error for PWV was 1.98 mm; compared with that of RS- and ERA5-derived PWV, the actual error was 2.69 mm and 2.16 mm, respectively. In addition, the changing trend of GNSS-derived PWV was consistent with that of rainfall events, and it closely and negatively correlated with the standardized precipitation evapotranspiration index. Therefore, the PWV retrieved from GNSS data in this study offers high precision and good feasibility for practical applications; thus, it can serve as a crucial tool for investigating water vapor distribution and climate change in Qinghai.

Funder

National key research and devel-opment plan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference36 articles.

1. An improved rainfall forecasting model based on GNSS observations;Zhao;IEEE Trans. Geosci. Remote Sens.,2020

2. Hourly rainfall forecast model using supervised learning algorithm;Zhao;IEEE Trans. Geosci. Remote Sens.,2021

3. Multi-sensors study of precipitable water vapour over mainland China;Wong;Int. J. Climatol.,2015

4. Trends and variability in column-integrated atmospheric water vapor;Trenberth;Clim. Dyn.,2005

5. High-precision ZTD model of altitude-related correction;Zhao;IEEE J. Sel. Top. Applided Earth Obs. Remote Sens.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3