Estimation of Carbonaceous Aerosol Sources under Extremely Cold Weather Conditions in an Urban Environment

Author:

Byčenkienė Steigvilė1ORCID,Gill Touqeer1,Khan Abdullah1ORCID,Kalinauskaitė Audrė1ORCID,Ulevicius Vidmantas1,Plauškaitė Kristina1ORCID

Affiliation:

1. Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania

Abstract

The present study investigated the characteristics of carbonaceous species in an urban background site. Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride, and black carbon [BC]) and organic submicron aerosols (OA) were carried out at the urban background site of Vilnius, Lithuania, during January–February 2014. An aerosol chemical speciation monitor (ACSM, Aerodyne Research Inc., Billerica, MA, USA) and co-located 7-λ aethalometer (AE-31, Magee Scientific, Berkeley, CA, USA) were used to analyze the chemical compositions, sources, and extinction characteristics of the PM1. Extremely contrasting meteorological conditions were observed during the studied period due to the transition from moderately cold (~2 °C) conditions to extremely cold conditions with a lowest temperature of −25 °C; therefore, three investigation episodes were considered. The identified periods corresponded to the transition time from the moderately cold to the extremely cold winter period, which was traced by the change in the average temperature for the study days of 1–13 January, with T = −5 °C and RH = 92%, in contrast to the period of 14–31 January, with T = −14 °C and RH = 74%, and the very short third period of 1–3 February, with T = −8 °C and RH = 35%. On average, organics accounted for the major part (53%) of the non-refractory submicron aerosols (NR-PM1), followed by nitrate (18%) and sulfate (9%). The source apportionment results showed the five most common OA components, such as traffic and heating, to be related to hydrocarbon-like organic aerosols (HOAtraffic and HOAheating, respectively), biomass-burning organic aerosols (BBOA), local organic aerosol (LOA), and secondary organic aerosol (SOA). Traffic emissions contributed 53% and biomass burning 47% to the BC concentration level. The highest BC and OA concentrations were, on average, associated with air masses originating from the southwest and east–southeast. Furthermore, the results of the PSCF and CWT methods indicated the main source regions that contributed the most to the BC concentration in Vilnius to be the following: central–southwestern and northeastern Poland, northwestern–southwestern and eastern Belarus, northwestern Ukraine, and western Russia. However, the potential sources of OA were widely distributed.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3