Paleo-Atmospheric Precipitation Recharged to Groundwater in Middle-Latitude Deserts of Northern China

Author:

Zhu Bing-Qi1

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

It is a difficult and hot issue in the hydrological studies of arid areas to choose suitable methods to evaluate the recharge of atmospheric precipitation to groundwater and its response to climate change in desert areas. This study reviews the theories and problems of vadose (unsaturated)-zone tracing methods selected by predecessors in hydrological studies and takes the deserts in middle latitudes of northern China as an example to extract decadal, centennial, and millennian information of atmospheric precipitation to groundwater recharge on a regional scale since the late Holocene. The fluctuations of atmospheric precipitation and chronological sequences of desert unsaturated zone were estimated by using the chlorine mass balance (CMB) theory. It indicates that the Badain Jaran Desert in the central Alashan Plateau and the surrounding Gobi deserts have experienced fluctuations of groundwater recharge on a centennial scale during the late Holocene period from about 700 to 2000 years ago. Multiple CMB profile records can identify four periods of relative wetness (1330–1430, 1500–1620, 1700–1780, and 1950–1990) and three periods of relative drought (1430–1500, 1620–1700, and 1900–1950) over the past millennium. These records are consistent with other paleoclimatic records in the northern margin of the Qinghai-Tibet Plateau, and relatively correspond to those in the eastern part of China. This indicates that groundwater recharge in the Alashan Plateau broadly reflects the degree of climatic variability in northwest China over the centennial scale and may be affected by the changes in the intensity of the East Asian summer monsoon. The estimated average recharge rate of precipitation in the Alashan Plateau in the last millennium is about 1.3~2.6 mm/a, which brings new geological evidence for understanding the source of groundwater recharge in the region but is quite different from other environmental records. It should be noted that there are uncertainties in the CMB records of the vadose zone profiles, mainly due to the assumption of atmospheric Cl input in the CMB estimation and the selection of the homogeneous vadose profile (piston flow). This study suggests that this uncertainty and its error should be extensively tested in the future by comparing deterministic data (such as regional reference stations) with large-scale random atmospheric Cl input backgrounds.

Funder

the Third Xinjiang Scientific Expedition Program

the National Natural Science Foundation of China

the Project of the Second Comprehensive Scientific Investigation on the Qinghai–Tibet Plateau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3