Environmental Analysis, Monitoring, and Process Control Strategy for Reduction of Greenhouse Gaseous Emissions in Thermochemical Reactions

Author:

Aboughaly Mohamed1ORCID,Fattah I. M. Rizwanul2ORCID

Affiliation:

1. Chemical Engineering Department, University of Saskatchewan, Management Area 3B48, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada

2. Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

This review paper illustrates the recommended monitoring technologies for the detection of various greenhouse gaseous emissions for solid waste thermochemical reactions, including incineration, pyrolysis, and gasification. The illustrated gas analyzers are based on the absorption principle, which continuously measures the physicochemical properties of gaseous mixtures, including oxygen, carbon dioxide, carbon monoxide, hydrogen, and methane, during thermochemical reactions. This paper illustrates the recommended gas analyzers and process control tools for different thermochemical reactions and aims to recommend equipment to increase the sensitivity, linearity, and dynamics of various thermochemical reactions. The equipment achieves new levels of on-location, real-time analytical capability using FTIR analysis. The environmental assessment study includes inventory analysis, impact analysis, and sensitivity analysis to compare the mentioned solid waste chemical recycling methods in terms of greenhouse gaseous emissions, thermal efficiency, electrical efficiency, and sensitivity analysis. The environmental impact assessment compares each technology in terms of greenhouse gaseous emissions, including CO2, NOx, NH3, N2O, CO, CH4, heat, and electricity generation. The conducted environmental assessment compares the mentioned technologies through 15 different emission-related impact categories, including climate change impact, ecosystem quality, and resource depletion. The continuously monitored process streams assure the online monitoring of gaseous products of thermochemical processes that enhance the quality of the end products and reduce undesired products, such as tar and char. This state-of-the-art monitoring and process control framework provides recommended analytical equipment and monitoring tools for different thermochemical reactions to optimize process parameters and reduce greenhouse gaseous emissions and undesired products.

Funder

University of Technology Sydney through Strategic Research Support funding

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3