Seismogenic Field in the Ionosphere before Two Powerful Earthquakes: Possible Magnitude and Observed Ionospheric Effects (Case Study)

Author:

Hegai Valery1ORCID,Zeren Zhima2,Pulinets Sergey3ORCID

Affiliation:

1. N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowaves Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow 108840, Russia

2. National Institute of Natural Hazards, Ministry of Emergency Management, Beijing 100085, China

3. Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow 117997, Russia

Abstract

A retrospective analysis of complex geophysical data around the time of the two most powerful earthquakes that occurred in Alaska and had magnitudes M = 8.2 (29 July 2021) and M = 9.2 (28 March 1964), respectively, is carried out. The aim of the research is to assess the maximum possible magnitude of the electric field of a seismogenic nature that penetrated the ionosphere/plasmasphere, which could cause the ionospheric effects observed experimentally. Theoretical calculations have shown that under the geophysical conditions that existed before these earthquakes (favorable for the penetration of the seismogenic field into the ionosphere), the maximum value of a quasi-static electric seismogenic field in the ionosphere, perpendicular to geomagnetic field lines (tens of hours/units of days before the earthquake) for earthquakes with magnitudes M = 8–9 could reach 1–2 mV/m. Such values are sufficient for the formation of a plasmaspheric ULF-ELF-VLF-duct, which is formed in the vicinity of the geomagnetic field-line passing through the epicenter of the earthquake under the influence of a seismogenic electric field that penetrated into the ionosphere/plasmasphere. This leads to an anomalous amplification of the captured ULF-ELF-VLF waves, ULF (DC-16 Hz), ELF (6 Hz–2.2 kHz), VLF (1.8–20 kHz), not only above the epicenter of the future earthquake, but also at the point magnetically conjugated with the epicenter of the earthquake, testifying to the formation of such a duct, stretched along the geomagnetic field from one hemisphere to another, and formed on closed L-shells shortly before the earthquake. This result is confirmed by the measurements of the mission of the CSES satellite (China-Seismo-Electromagnetic Satellite) for the 29 July 2021 earthquake with magnitude M = 8.2.

Funder

Program of Fundamental Scientific Research of the State Academy of Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3