Investigation of Summertime Ozone Formation and Sources of Volatile Organic Compounds in the Suburb Area of Hefei: A Case Study of 2020

Author:

Yu Hui12,Liu Qianqian23,Wei Nana1,Hu Mingfeng1,Xu Xuezhe1,Wang Shuo1,Zhou Jiacheng1ORCID,Zhao Weixiong1ORCID,Zhang Weijun13

Affiliation:

1. Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China

3. School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China

Abstract

Ground surface ozone (O3) is an emerging concern in China due to its complex formation process. In August 2020, field measurements of O3, NOx, and volatile organic compounds (VOCs) were carried out in Hefei’s western suburbs. The pollution features of VOCs and O3 formation were thoroughly analyzed. The total VOC concentration was 42.26 ppb, with the dominant contributor being oxygenated VOCs (OVOCs). Seven emission sources were recognized using the positive matrix factorization (PMF) model, including aged air masses, combustion sources, fuel evaporation, industrial emissions, vehicular emission, solvent utilization, and biogenic emission. Ozone generation mainly occurred under an NOx-limited regime based on the zero-dimensional box model analysis. According to the scenario analysis, the 13% cut in O3 might be achieved by the 10% and 30% reduction in NOx and VOCs, respectively. The O3 budget analysis demonstrates its high ozone production rate during the pollution period. The influence of regional transport cannot be ignored for high O3 pollution. This paper provides scientific evidence for O3 production and the strategies of reducing O3 by controlling its precursors.

Funder

National Natural Science Foundation of China

National Research Program for Key Issues in Air Pollution Control, China

Youth Innovation Promotion Association CAS

HFIPS Director’s Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3