Analysis of Groundwater Storage Changes and Influencing Factors in China Based on GRACE Data

Author:

Shao Chunxiu1,Liu Yonghe1ORCID

Affiliation:

1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

Groundwater is a primary freshwater resource for human consumption and an essential source for industry and agriculture. Therefore, understanding its spatial and temporal trends and drivers is crucial for governments to take appropriate measures to manage water resources. This paper uses Gravity Recovery and Climate Experiment (GRACE) satellite data and the Global Land Data Assimilation System (GLDAS) to derive groundwater storage anomalies (GWSAs) and to analyze the spatial and temporal trends of GWSA in different regions of China (Xinjiang, Tibet, Inner Mongolia, North China Plain, South China, and Northeast China). It used groundwater-level observation data to verify the accuracy of GWSA estimates and analyzed the drivers of regional GWSA changes. The results showed that: (1) GWSA in South China increased at a rate of 4.79 mm/a from 2003 to 2016, and GWSA in other regions in China showed a decreasing trend. Among them, the decline rates of GWSA in Xinjiang, Tibet, Inner Mongolia, North China Plain, and Northeast China were −6.24 mm/a, −3.33 mm/a, −3.17 mm/a, −7.35 mm/a, and −0.75 mm/a, respectively. (2) The accuracy of the annual-scale GWSA estimates was improved after deducting gravity losses due to raw coal quality, and the correlation coefficient between GWSA and groundwater levels monitored by observation wells increased. (3) In Xinjiang, the annual water consumed by raw coal mining, industrial, and agricultural activities had a greater impact on GWSA than rainfall and temperature, so these human activities might be the main drivers of the continued GWSA decline in Xinjiang. Water consumption by raw coal mining and industry might be the main drivers of the continued decline in GWSA in Inner Mongolia and the North China Plain. The increase in groundwater storage in South China was mainly due to the recharge of rainfall.

Funder

Henan Provincial Higher Education Key Research Project Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3