Attenuation Correction of the X-Band Dual-Polarization Phased Array Radar Based on Observed Raindrop Size Distribution Characteristics

Author:

Feng Jiabao1ORCID,Liu Xiantong2ORCID,Xia Feng2,Zhang Yu1,Rao Xiaona2

Affiliation:

1. Guangzhou Meteorological Observatory, Guangzhou 511430, China

2. Tornado Key Laboratory, Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou 510641, China

Abstract

X-band dual-polarization phased array radar (XPAR-D) possesses high resolution and plays a significant role in detecting meso- and micro-scale convective systems. However, the precipitation attenuation it endures necessitates an effective correction method. This study selected radar data from XPAR-D at the peak of Maofeng Mountain in Guangzhou during 16–17 May 2020 from three precipitation stages after quality control. Attenuation coefficients were calculated for different precipitation types through scattering simulations of raindrop size distribution (RSD) data. Next, an attenuation correction algorithm (MZH-KDP method) was proposed for the radar reflectivity factor (ZH) according to different raindrop types and compared to the ZH-KDP method currently in use. The results indicate that the attenuation amount of XPAR-D echoes depends on the attenuation path and echo intensity. When the attenuation path is shorter and the echo intensity is weaker, the amount of attenuation and correction is smaller. Difficulties arise when there are noticeable deviations, which are challenging to resolve using attenuation correction methods. Longer attenuation paths and stronger echoes highlight the advantages of the MZH-KDP method, while the ZH-KDP method tends to overcorrect the bias. The MZH-KDP method outperforms the ZH-KDP method for different precipitation types. The superior correction capability of the MZH-KDP method provides a significant advantage in improving the performance of XPAR-D for the detection of extreme weather.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Research Project of Guangdong Meteorological Bureau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3