Physical Mechanism of the Development and Extinction of the China Southwest Vortex

Author:

Zhou Wenlin1,Li Yueqing2ORCID,Liu Chun3,Peng Junkai4

Affiliation:

1. School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China

2. Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China

3. Liaoyang Meteorological Bureau, Liaoyang 111010, China

4. College of Land and Environment, Shenyang Agricultural University, Shengyang 100866, China

Abstract

In this paper, a typical vortex system based on quasi-linear thermal-dynamic equations to reflect the development and extinction of the China Southwest Vortex is established using the vortex motion stability method combined with the outer environmental field and cumulus convective latent heat release. The development and extinction of the China Southwest Vortex in catastrophic weather systems are studied from the aspects of stability and development mechanisms for the primary-stage China Southwest Vortex, the transition mechanism from the primary-stage China Southwest Vortex to the mature vortex, and stability and development mechanisms of the mature China Southwest Vortex. The results show the following: (1) the convergence and divergence of the surrounding flow field is the main factor influencing the development and extinction of the primary-stage China Southwest Vortex, while gravity wave disturbance is the main driving force for the maintenance and development of the primary vortex. Based on the convergence of the external flow field, the gravity wave disturbance must exceed the critical frequency, or the vortex will tend to die out. (2) The convergence and divergence of the surrounding flow field is also the main factor for the transition from the primary vortex to the mature vortex. Based on the convergence of the surrounding flow field, the primary vortex transforms into a mature vortex only when the gravity wave disturbance strongly exceeds the critical frequency and causes the vertical disturbance to become unstable. (3) The convergence and divergence of the external flow field is also the main factor for the development and extinction of the mature China Southwest Vortex. In the early stage, the vortex can be maintained and developed as long as the surrounding flow field converges. In the case of the divergence of the external flow field, the vortex may be maintained for a short time, but eventually dissipates when the gravity wave disturbance exceeds the critical frequency. In the later stage, under the convergence of the surrounding flow field, the vortex can be maintained when the gravity wave disturbance exceeds the critical frequency. However, with the divergence of the surrounding flow field, the vortex may be maintained for a short time, but it will eventually dissipate when the gravity wave disturbance is extremely strong. In addition, the observations of the evolution of China Southwest Vortexes and gravity wave activities under the influence of southwest airflow and atmospheric disturbance in the Western Sichuan Plateau–Sichuan Basin are explained by the above physical mechanism. It is also pointed out that the heating effect can be an obstacle to the development of the China Southwest Vortex by increasing the critical frequency of gravity waves during unstable layer formation, and the divergent environment flow field under the condition of stable layer formation. Therefore, this paper deepens the understanding of the evolution process and anomalous mechanisms of the China Southwest Vortex.

Funder

the Major Research plan of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference46 articles.

1. Lu, J.H. (1986). Outline of Southwest Vortex, China Meteorological Press.

2. Xu, Y.H. (1991). Climate of Southwest China, China Meteorological Press.

3. Li, G.P. (2002). Dynamic Meteorology of the Tibetan Plateau, China Meteorological Press.

4. New Advances in Southwest China Vortex Research;Chen;Plateau Meteorol.,2004

5. A Review of the Research and Observing Experiment on Southwest China Vortex;Li;Adv. Meteorol. Sci. Technol.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3