Comparison of 24 h Surface Ozone Forecast for Poland: CAMS Models vs Simple Statistical Models with Limited Number of Input Parameters

Author:

Pawlak Izabela1,Fernandes Alnilam1ORCID,Jarosławski Janusz1ORCID,Klejnowski Krzysztof2,Pietruczuk Aleksander1ORCID

Affiliation:

1. Institute of Geophysics, Polish Academy of Sciences, 01-452 Warszawa, Poland

2. Institute of Environmental Engineering, Polish Academy of Sciences, 41-819 Zabrze, Poland

Abstract

Surface ozone is usually measured in national networks, including the monitoring of gaseous components important for determining air quality and the short-term forecast of surface ozone. Here we consider the option of forecasting surface ozone based on measurements of only surface ozone and several weather parameters. This low-cost configuration can increase the number of locations that provide short-term surface ozone forecast important to local communities. 24 h prediction of the 1-h averaged concentration of surface ozone were presented for rural (Belsk, 20.79° E, 51.84° N) and suburban site (Racibórz, 18.19° E, 50.08° N) in Poland for the period 2018–2021 via simple statistical models dealing with a limited number of predictors. Multiple linear regression (MLR) and artificial neural network (ANN) models were examined separately for each season of the year using temperature, relative humidity, an hour of the day, and 1-day lagged surface ozone values. The performance of ANN (with R2 = 0.81 in Racibórz versus R2 = 0.75 at Belsk) was slightly better than the MLR model (with R2 = 0.78 in Racibórz versus R2 = 0.71 at Belsk). These statistical models were compared with advanced chemical–transport models provided by the Copernicus Atmosphere Monitoring Service. Despite the simplicity of the statistical models, they showed better performance in all seasons, with the exception of winter.

Funder

National Science Center in Poland

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3