Integrated Analysis of Lithosphere-Atmosphere-Ionospheric Coupling Associated with the 2021 Mw 7.2 Haiti Earthquake

Author:

Shahzad Faisal1,Shah Munawar1ORCID,Riaz Salma2,Ghaffar Bushra3ORCID,Ullah Irfan4,Eldin Sayed M.5

Affiliation:

1. Space Education and GNSS Lab, National Center of GIS and Space Application, Institute of Space Technology, Islamabad 44000, Pakistan

2. Department of Applied Mathematics and Statistics, Institute of Space Technology, Islamabad 44000, Pakistan

3. Department of Environmental Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan

4. Department of Geology, Bacha Khan University, Charsadda 24420, Pakistan

5. Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11511, Egypt

Abstract

The search for Earthquake (EQ) precursors in the ionosphere and atmosphere from satellite data has provided significant information about the upcoming main shock. This study presents the abnormal atmospheric and ionospheric perturbations associated with the Mw 7.2 Haiti EQ on 14 August 2021 at geographical coordinates (18° N, 73° W) and shallow hypocentral depth of 10 km from the data of permanent Global Navigation Satellite System (GNSS) stations near the epicenter, followed by Swarm satellites data. The total vertical electron (VTEC) anomalies occur within a 5-day window before the main shock in the analysis of nearby operation stations, followed by Swarm (A and C satellites) ionospheric anomalies in the same 5-day window before the main shock. Moreover, the geomagnetic activities are completely quiet within 10 days before and 10 days after the main shock. Similarly, the atmospheric parameters endorse the EQ anomalies within 5 days before the main shock day. The evolution of gases from the lithosphere at the epicentral region possessed significant atmospheric and ionospheric perturbations within the EQ preparation period of 5-day before the main shock under the hypothesis of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC).

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3