Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China

Author:

Jia Xingbin1,Gong Xiang1ORCID,Liu Xiaohuan23,Zhao Xianzhi1,Meng He4,Dong Quanyue5,Liu Guangliang6,Gao Huiwang23

Affiliation:

1. School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China

2. Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266071, China

3. Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

4. Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China

5. College English Office, Qingdao Vocational and Technical College of Hotel Management, Qingdao 266100, China

6. Shandong Provincial Key Laboratory of Computer Networks, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250101, China

Abstract

Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.

Funder

Huiwang Gao

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3