Affiliation:
1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
The 2020 Meiyu season has received extensive attention due to its record-breaking rainfall in the Yangtze–River Huai Basin (YHRB) region of China. Although its rainfall features have been well studied on various time scales, the sub-hourly/hourly rainfall features are unknown. In this study, a wavelet analysis was applied to 1 min rainfall data from 480 national rain gauges across the YHRB, and hourly synoptic patterns during the Meiyu season were grouped using an obliquely rotated principal component analysis in T-mode (PCT). The results suggest that variances on the sub-hourly and hourly scales contributed 63.4% of the 2020 Meiyu rainfall. The hourly synoptic variations in the Meiyu season can be categorized into three major patterns: weak synoptic forcing (P1), a convergence line (P2), and a vortex (P3). The rainfalls under P1 were spatially dispersed over the YHRB and on the shortest time scale, with a 70.4% variance from sub-hourly to hourly rainfalls. P2 had a peak wavelet variance around 30 min–1 h, with rainfalls concentrated to the south of the convergent line. The rainfalls under P3 were locally distributed with a longer duration of around 1–4 h. Compared with the climate mean, hourly rainfall frequencies are indispensable to understanding the 2020 accumulated Meiyu rainfall anomaly. This research highlights the dominant role of synoptic patterns on the temporal and spatial features of the Meiyu rainfall.
Funder
National Natural Science Foundation of China
Open Research Program of the State Key Laboratory of Severe Weather
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference54 articles.
1. Tao, S.Y., and Chen, L. (1987). A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorol., 60–92.
2. Reconstruction and application of the monthly western Pacific subtropical high indices;Liu;J. Appl. Meteorol. Climatol.,2012
3. A 33-yr Mei-Yu-Season Climatology of Shear Lines over the Yangtze–Huai River Basin in Eastern China;Yao;J. Appl. Meteorol. Climatol.,2020
4. Characteristics of Baiu Front as a Predominant Subtropical Front in the Summer Northern Hemisphere;Ninomiya;J. Meteorol.,1984
5. Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet;Sampe;J. Clim.,2010