Impact of Anthropogenic Emission Reduction during COVID-19 on Air Quality in Nanjing, China

Author:

Yao Zehui1,Wang Yong2ORCID,Qiu Xinfa1,Song Fanling1

Affiliation:

1. School of Geographical Science, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

To avoid the spread of COVID-19, China has implemented strict lockdown policies and control measures, resulting in a dramatic decrease in air pollution and improved air quality. In this study, the air quality model WRF-Chem and the latest MEIC2019 and MEIC2020 anthropogenic emission inventories were used to simulate the air quality during the COVID-19 lockdown in 2020 and the same period in 2019. By designing different emission scenarios, this study explored the impact of the COVID-19 lockdown on the concentration of air pollutants emitted by different sectors (industrial sector and transportation sector) in Nanjing for the first time. The results indicate that influenced by the COVID-19 lockdown policies, compared with the same period in 2019, the concentrations of PM2.5, PM10, and NO2 in Nanjing decreased by 15%, 17.1%, and 20.3%, respectively, while the concentration of O3 increased by 45.1% in comparison; the concentrations of PM2.5, PM10 and NO2 emitted by industrial sector decreased by 30.7%, 30.8% and 14.0% respectively; the concentrations of PM2.5, PM10 and NO2 emitted by transportation sector decreased by 15.6%, 15.7% and 26.2% respectively. The COVID-19 lockdown has a greater impact on the concentrations of PM2.5 and PM10 emitted by the industrial sector, while the impact on air pollutants emitted by the transportation sector is more reflected in the concentration of NO2. This study provides some theoretical basis for the treatment of air pollutants in different departments in Nanjing.

Funder

National Key R&D Program of China

Postgraduate Education Reform Project of Jiangsu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference56 articles.

1. The contribution of outdoor air pollution sources to premature mortality on a global scale;Lelieveld;Nature,2015

2. Source apportionment of PM2.5 in North India using source-oriented air quality models;Guo;Environ. Pollut.,2017

3. IQAir (2020). 2020 World Air Quality Report, IQAir.

4. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID;Coccia;Sci. Total Environ.,2020

5. Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States;Liang;Innovation,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3