Affiliation:
1. School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
2. Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation (under Planning), Research Institute of Yanchang Petroleum (Group) Co., Ltd., Xi’an 710065, China
Abstract
In recent decades, the massive emission of greenhouse gases, such as carbon dioxide and methane, into the atmosphere has had a serious impact on the ecological environment. The dry reforming of carbon dioxide and methane to syngas cannot only realize the resource utilization of methane and carbon dioxide but also reduce global climate change. It is of great significance in carbon emission reduction. Owing to the dry reforming of methane (DRM) being a strongly endothermic reaction, it needs to be carried out under high-temperature conditions. It makes the catalyst have problems of the sintering of metal, carbon deposition, and poisoning. This article revolves around the problem of catalyst deactivation during the DRM reaction. It expands upon the thermodynamics and mechanisms of the DRM reaction, analyzes the causes of metal catalyst deactivation due to carbon deposition, sintering, and poisoning, and summarizes how the active components, supports, and additives of metal catalysts restrain the DRM catalyst deactivation during the reaction. The analysis revealed that changing the type and size of the active metal, adjusting the properties of the support, and adding additives can further regulate the dispersion of the active component, the interaction between the active component and the support, the oxygen vacancies of the support, and the acidity and basicity of the catalyst surface, ultimately achieving control over the metal catalyst’s resistance to sintering, carbon deposition, and sulfur poisoning. In addition, it discusses the application of metal catalysts in photothermal and plasma-catalyzed DRM. Finally, it outlines the prospects for research on metal catalysts for the DRM.
Funder
National Natural Science Foundation of China
Open Foundation of Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation
Fundamental Research Funds for the Central Universities
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献