Response of Extratropical Transitioning Tropical Cyclone Size to Ocean Warming: A Case Study for Typhoon Songda in 2016

Author:

Miao Ziwei1ORCID,Tang Xiaodong1ORCID

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China

Abstract

This study attempts to investigate how future sea surface temperature increases will affect the size (radius of gale-force [17 m s−1] wind at 10 m height; i.e., R17) evolution of tropical cyclones that undergo extratropical transition (ET) through sensitivity experiments of sea surface temperature (SST) for Typhoon Songda (2016) in the northwestern Pacific. Two numerical experiments were carried out, including a control simulation (control) and a sensitivity experiment (SST4.5) with SST increased by 4.5 degrees in the entire domain. The results showed that Songda tended to be stronger and larger with projected higher SSTs. Moreover, the momentum equation for tangential wind was utilized to study the mechanism of R17 evolution in different SST scenarios, in which the radial absolute vorticity flux term played a dominant role in generating a positive tendency of tangential wind. The results indicate that before ET, higher SSTs in the entire domain led to more active rainbands in both inner-core and outer-core regions. As a result, stronger secondary circulation and low-level inflow extended outward, and the absolute angular momentum (AAM) importing from the outer region increased, which led to a larger R17 in SST4.5. During the ET, the peripheral baroclinically driven frontal convection induced extensive boundary layer inflow, which accelerated the tangential flow in the outer frontal region through strong inward AAM transport. However, due to the lower latitude of the cyclone and the strong frontolysis at the outer side of the cold pool in SST4.5, the peripheral frontal convection reached the location of R17 later; thus, the increase in the cyclone size lagged behind that in the control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3